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Abstract—Mass spectrometry is one of the primary methods
for chemical analysis and serves as a fundamental tool in
numerous scientific disciplines. In this paper we consider the
design of time-of-flight mass spectrometers, which produce a
stream of measurements which can be modeled by a convolution
between the mass spectrum of interest and a specified pulsing
pattern. Our goal is to reduce the total time necessary to analyze a
sample to a given precision (or equivalently, given a fixed amount
of time, to obtain a more precise estimate of the sample). We
can do this by leveraging the structure that exists in typical
mass spectra. In particular, since any given substance is usually
composed of a relatively small number of distinct molecules,
mass spectra tend to be relatively sparse. In this paper we
perform an analysis of an idealized model of a time-of-flight
mass spectrometer which uses a randomized pulsing pattern.
Such an architecture has the potential to enable a new tradeoff
between acquisition time and precision/dynamic range. We show
that under certain natural conditions on the randomized scheme
— namely, that the system does not pulse too often — this
construction will lead to a system which satisfies certain desirable
properties that are sufficient to ensure that sparse recovery is
possible. In particular, we show that with high probability, the
system will satisfy the conditions of a bipartite expander graph
provided the pulsing rate is not too large. We then conclude with
a range of simulations that support our theoretical analysis and
demonstrate the practical viability of this approach.

I. INTRODUCTION

The goal of mass spectrometry is to determine the chemical
composition of a substance by first ionizing a sample (the
analyte) and then measuring the mass-to-charge ratio (MCR)
of the constituent ions. This technique is extremely useful
in numerous applications where precise chemical analysis is
desirable, including chemistry, biology, and genetics [1]. A
linear record of these ions, arranged by MCR, is called a mass
spectrum.

In time-of-flight mass spectrometry (TOFMS) specifically,
the measurement apparatus consists of an ionizer, a set of
charged plates, a drift region, and a detector. The ionizer
converts the analyte into ions, which are then accelerated by
briefly charging a set of electric plates. Each ion gains a fixed
kinetic energy from the acceleration, resulting in a velocity
inversely proportional to the square root of the MCR. The
accelerated ions travel through the drift region and arrive at the
detector at different times depending on their velocity, which
in turn depends on the MCR, allowing one to easily observe
the mass spectrum. This setup is depicted in Fig. 1.
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Fig. 1. A simplified view of a TOFMS device. Ions are produced and are then
accelerated by a pulsed electric field. They travel through a drift region before
arriving at a detector. The detector records the mass spectrum, the abundance
of each ion in the sample. See [2] for more details.

A traditional TOFMS device will “fire” an electric pulse
(accelerating the ions) and “listen” for the arrivals at the
detector before repeating the process. Repetition is necessary
because the output of a typical TOFMS system is often
relatively noisy. Sources of this noise include a variable
number of ion arrivals for a pulse event and modest variations
in drift times for ions (two ions of the same species might
arrive with slightly different delays). Thus one must combine
the responses of many pulses to ensure a sufficiently precise
output. In a traditional TOFMS system, the time between
pulses is set to be sufficiently large to ensure that all the ions
have time to travel through the device before the next pulse,
so as to prevent “aliasing” of ions from different pulse events.

While simplifying the back-end processing, this design
choice has significant costs in that it either greatly increases
the total time necessary to analyze a sample or greatly limits
the dynamic range (the allowable delay between the fastest
and slowest ions). This can be problematic in certain circum-
stances, such as when examining a substance which may be
dynamically evolving on a relatively short time scale.

Fortunately, mass spectra tend to be highly structured — in
particular, they are often sparse (meaning that many MCRs
are not represented in any individual analyte), so most of
the system’s time is spent simply waiting while receiving
no signal at the detector. In this paper, we consider a multi-
pulse TOFMS system which exploits this sparsity and instead
overlaps many pulses and sensing windows, reducing the total
time required to determine chemical composition. Equiva-
lently, multi-pulse TOFMS allows us to potentially increase
the signal-to-noise ratio or improve the dynamic range given
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Fig. 2. The observation matrix A is binary and Toeplitz and implements linear
convolution with vector a. Each successive column is the previous column
shifted down one index.

a total time constraint. This is analogous to the use of a
staggered pulse repetition frequency to increase unambiguous
range in RADAR systems [3]. We note that a variety of
approaches to TOFMS have been proposed in the past that
also exploit this structure (see, e.g., [4]–[6]).

Here we focus on the technique of randomizing pulse times
in order to overlap the “aliases” in a way that still allows us
to distinguish different ions [6]. Although it is desirable to
pulse frequently to maximize the number of ions measured
(and hence increase the signal-to-noise ratio), if too many
different ions strike the detector simultaneously it will not be
possible to accurately assign the arrivals to the correct MCR
bins. The frequency of pulses is a key parameter that effects
a trade-off between analysis time and spectrum fidelity, but
which has not yet been addressed in the existing literature.
We believe that our theoretical analysis will give intuition as
to how often we can pulse while still retaining the ability to
identify the distinct ions composing a sample. Specifically,
we do this by establishing conditions under which a random
binary convolution matrix is the adjacency matrix of a bipartite
expander graph.

II. A MATHEMATICAL MODEL OF MULTI-PULSE TOFMS

Let x ∈ Rn+ denote the nominal (time-discretized) response
of the analyte, where each index determines the frequency of
an ion species with a given TOF. If the analyte is excited by
the pulse firing sequence a ∈ {0, 1}m (every 1 in a determines
when a pulse is fired), then the detector response is the (noisy)
convolution y = a∗x+ν with y, ν ∈ Rm′

and m′ = m+n−1.
Because convolution is a linear operation, we can construct a
matrix A such that Ax = a ∗ x. The sensing matrix A ∈
{0, 1}m′×n is Toeplitz with a (zero-padded to length m′) as
the first column, as shown in Fig. 2.

The design of the sensing matrix is thus limited to the choice
of a. While [6] selects the time between pulses to be a uniform
random variable with a prescribed average rate, the following
analysis is based on selecting a to be a Bernoulli random
vector (in order to make firing times independent). We make
the choice

ai =

{
1 with probability p
0 with probability 1− p

...

...
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Fig. 3. A bipartite graph has a set of left and right vertices that are connected
through an adjacency matrix A. The operator A(S) denotes the right vertices
adjacent to S, a set of left vertices. The identical “pattern” of connections
from each vertex corresponds to a Toeplitz choice of A, as in our case.

for i ∈ {1 . . .m}, which reduces the design of the sensing
matrix to the choice of the single parameter p. We will assume
that the parameters m and n (and m′) are fixed. We also
assume that the signal x (the mass spectrum) has sparsity k,
by which we mean that no more than k of the n possible TOF
bins are occupied by ion species for a given analyte.

Our goal is to understand how often we can pulse our system
(i.e., how large we can set p) while still ensuring that we can
reliably estimate the vector x (or the location of its nonzeros,
depending on our error metric). One powerful technique to
ensure that it is possible to recover sparse signals from our
measurements is to show that A is the adjacency matrix of a
bipartite expander graph [7]–[9].

A d-regular bipartite graph has n left vertices that each
connect to d of the m right vertices (left degree d), as in
Fig. 3. The adjacency matrix A of the graph determines how
the left vertices (columns) are connected with the right vertices
(rows) of the graph. In a TOF system, this matrix is Toeplitz,
which means that each left vertex has the same “pattern” of
connections (shifted according to the index).

A d-regular bipartite expander graph satisfies the property
that for any choice of k left vertices the number of “adjacent”
(connected) right vertices is almost as large as dk, suggesting
that there are very few right vertices that connect to more than
one of the chosen k left vertices. More formally, let S be a
set of left vertices and A(S) return the set of right vertices
connected to S by the adjacency matrix A. If E(k, ε) is the
set of all bipartite expander graph adjacency matrices and d
is the number of nonzeros in each column of A then

A ∈ E(k, ε) ⇔ |A(S)| ≥ (1− ε)d|S| ∀ |S| ≤ k. (1)

Once we know that our sensing matrix is the adjacency
matrix of a bipartite expander graph, this leads to a range of
guarantees regarding our ability to recover sparse signals [7],
[8]. Such matrices also satisfy the RIP-1 property [9].



III. SENSING MATRIX AS AN EXPANDER GRAPH

We now show that under certain natural conditions on the
choice of p, the sensing matrix A formed via the Toeplitz
extension of a vector a with Bernoulli(p) entries will satisfy
the conditions of a bipartite expander graph with high proba-
bility. In particular, Theorem 1 suggests that we must obey the
constraint p . ε

k . Thus, because the constant ε for an expander
must satisfy ε < 1, it is reasonable to choose p ≈ 1

k (within
some small constant factor).

Theorem 1. Suppose that m = Ω(k3 log n
k ) and that a ∈

{0, 1}m has elements drawn as independent Bernoulli(p)
random variables. Then the matrix A corresponding to linear
convolution with a satisfies A ∈ E(k, ε) with high probability
provided that kp < 2εβ for some constant β < 1.

Proof. Conversely to (1), a matrix is not an expander if there
exists a set of left vertices S with |S| = ` for some ` ≤ k
such that that |A(S)| < (1− ε)d`. Let si denote a single left
vertex from set S. Note that |A(si)∩A(sj)| = ATi Aj , where
Ai is the sth

i column of A. Thus, we can use the inequality

|A(S)| ≥
∑̀
i=1

|A(si)| −
∑̀
i=1
j=i+1

ATi Aj

and the fact that |A(si)| = d for all i to arrive at the bound

P(A /∈ E(k, ε)) ≤
k∑
`=1

(
n

`

)
P

 ∑̀
i=1
j=i+1

ATi Aj > εd`


≤
(en
k

)k
max
`≤k

P

 ∑̀
i=1
j=i+1

ATi Aj > εd`


≤
(en
k

)k
max
`≤k

max
1≤i<j≤`

`2

2
P
(
ATi Aj >

2εd

`

)
, (2)

where (2) follows by the application of the union bound.
Note that ATi Aj =

∑m−|si−sj |
h=1 ahah+|si−sj | and that,

though dependent, the terms of this sum can be split into
two separate sums of independent Bernoulli random variables.
These form two (dependent) binomial random variables. For
example, a1a2+a2a3+a3a4 . . . = (a1a2+a3a4 . . .)+(a2a3+
a4a5 . . .) = Λ1 + Λ2.

Using the Chernoff bound for a binomial random variable
Λ ∼ Bin(m2 , p

2) with t > 1
2mp

2 results in the bound

P(Λ ≥ t) ≤ exp

(
− 1

mp2

(
t− mp2

2

)2
)

and applying this to the split sums using the union bound gives

P
(
ATi Aj ≥

2εβmp

`

)
≤ 2 exp

(
−m
`2

(
εβ − `p

2

)2
)

(3)

with the requirement that ε > `p
2β . To use (3) in (2), we need

to ensure that βmp ≤ d. It is easy to recognize that d ∼

Bin(m, p) and that for β < 1

P (d ≤ βmp) ≤ exp
(
−mp

2
(1− β)

2
)
. (4)

A union bound over (3) and (4) ensures that for any ε > kp
2β

and β < 1,

P(A /∈ E(k, ε)) ≤ exp
(
−mp

2
(1− β)

2
)

+

exp

(
k log

en

k
+ 2 log k − m

k2

(
εβ − kp

2

)2
)
. (5)

This probability is small provided that m = Ω(k3 log n
k ).

IV. SIMULATIONS

To complement the theoretical analysis above, we conduct
a range of simulations under a simple noise model where
the arrival of ions at the detector is modeled as a Poisson
process with rate determined by the sensing matrix A and the
underlying mass spectrum x. In particular, we will model our
observations as

yi ∼ Poisson(λi) λ , Ax+ γ (6)

for a known background noise power γ ∈ R+ and k-sparse
unknown signal x ∈ Rn+.1 The observation model in (6) leads
to the negative-log-likelihood

L(x|y) =

m′∑
i=1

λi − yi log λi + log yi! .

We can then compute the constrained and sparsity-regularized
maximum-likelihood estimate via:

x̂ = arg min
x∈Rn

+

L(x|y) + α‖x‖1 (7)

using SPIRAL [11] or other convex optimization techniques.
We do not use the more common regularized least-squares
optimization for this problem because least-squares is poorly
suited to our Poisson observation model [12].

To examine the practical impact of the choice of p on
our ability to recover k-sparse signals under the observation
model in (6) we conduct synthetic simulations over a range of
combinations of k and p. We set m′ = 50 000, n = 5 000, and
γ = 0.05. We generate candidate k-sparse signals x in which
the locations of the k nonzeros are selected uniformly at ran-
dom and the values are drawn from the truncated exponential
distribution with range [0.1, 1] (so that, for example, the chance
of being in the range [0.1, 0.2] is equal to the chance of being
in the range [0.2, 0.4]). After generating our observations y
according (6), we compute an estimate x̂ via the optimization
problem (7). As a post-processing step (to aid in detecting the

1It is possible to consider a slightly more realistic model as in [6], which
employs a compound Poisson–Erlang model that also accounts for additional
measurement noise in the detector/sampling system. Moreover, in practice
ion impacts tend to spread across multiple detector time-samples (rather than
having an ideal impulsive response) and ions also possess a small amount of
variability in drift times. Thus, in a real TOFMS system the use of a cluster-
sparse model might be more appropriate [10]. Here we ignore these possible
refinements in the interest of simplicity.



Fig. 4. Normalized `1 error, miss rate, and false discovery rates for regularized maximum-likelihood recovery of the system. The dashed line corresponds to
the choice kp = 2 and closely aligns with the optimum p over a wide range of k in terms of error and miss rate.

locations of the nonzeros) we threshold x̂ at one-quarter the
minimum abundance so that any entry x̂i < 0.025 is set to
zero. The regularization parameter used is α = m′p.

We examine the performance of this system over 500 trials
for each (k, p) pair, with 6 values of k per decade and 8
values of p per decade. We report the average normalized `1
error 1

k‖x − x̂‖1, miss rate 1
k

∑
i I(xi > 0, x̂i = 0), and

false discovery rate 1∑
i I(x̂i>0)

∑
i I(x̂i > 0, xi = 0) of the

recovery.2 In Fig. 4 we show how these three statistics vary
as a function k and p. All MATLAB code used for these
simulations is available for download at http://users.ece.gatech.
edu/∼mdavenport/software/.

V. DISCUSSION

As we can see from Fig. 4, the `1 error and miss rate are
optimized for most k by choosing p ≈ 2

k (though this will vary
slightly with m and n). The contours of the false discovery
rate in Fig. 4 follow a slightly different trend, but also appear
to be minimized by choosing p ∝ 1

k . This agrees closely with
the analysis performed in Section III.

This result also has an intuitive explanation: the quantity
kp corresponds to the expected number of unique species
simultaneously arriving at the detector. For kp � 1, most
observation intervals have zero impact events and one would
expect that increasing p to take better advantage of the limited
observation time should lead to improved estimates of the
mass spectrum. Conversely, for kp � 1 multiple species are
likely to be arriving simultaneously in nearly all observation
intervals. It is not hard to imagine that for large kp, the
constant barrage of ions will make it difficult to disentangle
the signal and determine the abundance, or even presence, of
any individual species.

Note that a traditional TOFMS system, in which the drift
region is allowed to clear completely between pulses, is
roughly akin to the choice p = 1

n . Thus, using a uniformly
random pulsing pattern, one can accelerate acquisition by a
factor of n

k compared to traditional TOFMS. One can imagine

2The `1 error is presented because it is more sensitive to small errors in the
recovery than the `2 error and is less easily dominated by the performance
on only the largest few coefficients.

that similar results concerning the pulse-rate might apply when
the time between pulses is restricted to some sufficiently broad
range (since most spectrometers have a minimum interval
between pulses) or when ion drift times suffer small variations.
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