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ABSTRACT
Suppose that we wish to estimate a vector x from a set of
binary paired comparisons of the form “x is closer to p than
to q” for various choices of vectors p and q. The problem of
estimating x from this type of observation arises in a variety
of contexts, including nonmetric multidimensional scaling,
“unfolding,” and ranking problems, often because it provides a
powerful and flexible model of preference. The main contribu-
tion of this paper is to show that under a randomized model
for p and q, a suitable number of binary paired comparisons
yield a stable embedding of the space of target vectors.

Index Terms— paired comparisons, binary stable embed-
dings, recommendation systems, 1-bit compressive sensing

1. INTRODUCTION

The central problem we consider in this paper is the estimation
of a vector x ∈ Rn where, rather than directly observing x,
we assume that we are restricted to m observations of the form
“x is closer to pi than qi,” where pi,qi ∈ Rn correspond to
points whose locations are known. Each of these comparisons
essentially divides Rn in half and tells us which side of a hy-
perplane the point x lies. Observations of this form arise in a
variety of contexts, but a particularly important class of applica-
tions involve recommendation systems, targeted advertisement,
and psychological studies where x represents an ideal point
that models a particular user’s preferences and the pi and qi

represent items that the user compares [1]. Items which are
close to x are those most preferred by the user. Paired com-
parisons arise naturally in this context since precise numerical
scores quantifying a user’s preference are generally much more
difficult to assign than comparative judgements [2, 3]. More-
over, data consisting of paired comparisons is often generated
implicitly in contexts where the user has the option to act on
two (or more) alternatives; for instance they may choose to
watch a particular movie, or click a particular advertisement,
out of those displayed to them [4]. In such contexts, the “true
distances” in the ideal point model’s preference space are gen-
erally inaccessible in any direct way, but it is nevertheless still
possible to obtain a good estimate of a user’s ideal point.
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The fundamental question which interests us in this paper
is how many comparisons suffice in order to guarantee that the
number of differing paired comparisons generated by x and y
is roughly proportional to the Euclidean distance between x
and y. This allows us to understand how well x can potentially
be estimated from highly quantized information and gives an
idea of the stability in the presence of labeling errors.

We consider the case where we are given an existing em-
bedding of the items (as in a mature recommender system)
and focus on the on-line problem of locating a single new user
from their feedback (consisting of binary data generated from
paired comparisons). The item embedding could be generated
using a variety of methods, such as multidimensional scaling
applied to a set of item features, or even using the results of pre-
vious paired comparisons via an approach like that in [5]. We
wish to understand how many comparisons are then required
to accurately localize a user’s ideal point. Any precise answer
to this question would depend on the underlying geometry of
the item embedding (since some sets of hyperplanes will yield
better tesselations of the preference space than others). Thus,
to gain some intuition on this problem without reference to the
geometry of a particular embedding, we will instead consider
a probabilistic model where the items are generated at random
from a particular distribution.

It is important to note that the ideal point model, while
similar, is distinct from the low-rank factor or attribute model
used in the matrix completion approaches which have recently
gained much attention as applied to recommendation systems,
e.g., [6, 7]. Although both models suppose user choices are
guided by a number of attributes, the ideal point model leads
to preferences that are non-monotonic functions of those at-
tributes. There is also empirical evidence that the ideal point
model captures user behavior more accurately than factoriza-
tion based approaches do [8, 9].

There is a large body of work that studies the problem of
learning to rank items from various sources of data, including
paired comparisons of the sort we consider in this paper. See,
for example, [10, 11, 12] and references therein. We first note
that in most work on rankings, the central focus is on learn-
ing a correct rank-ordered list for a particular user, without
providing any guarantees on recovering a correct parameteri-
zation for the user’s preferences as we do here. Perhaps most
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closely related to our work is that of [10, 11], which examines
the problem of learning a rank ordering using the same ideal
point model considered in this paper. The message in this
work is broadly consistent with ours, in that the number of
comparisons required should scale with the dimension of the
preference space (not the total number of items). Also closely
related is the work in [13, 14, 15] which consider paired com-
parisons and more general ordinal measurements in the similar
(but as discussed above, subtly different) context of low-rank
factorizations. Finally, while seemingly unrelated, we note
that our work builds on the growing body of literature on 1-bit
compressive sensing. In particular, our results are largely in-
spired by those in [16, 17], and borrow techniques from [18]
in the proofs of some of our main results.

2. THE RANDOM OBSERVATION MODEL

For the moment we will consider the “noise-free” setting where
a user always prefers the item closest to the user’s ideal point
x. In this case we can represent the observed comparisons
mathematically by letting Ai(x) denote the ith observation,
which consists of comparisons between pi and qi, and setting

Ai(x) := sign
(
∥x− qi∥2 − ∥x− pi∥2

)
=

{
+1 if x is closer to pi

−1 if x is closer to qi.

We will also use A(x) = [A1(x), · · · ,Am(x)]T to denote the
vector of all observations resulting from m comparisons. Note
that if we set ai = (pi−qi) and τi =

1
2 (∥pi∥2−∥qi∥2), then

we can re-write our observation model as

Ai(x) = sign
(
2aTi x− 2τi

)
= sign

(
aTi x− τi

)
. (2.1)

This is reminiscent of the one-bit compressive sensing setting
(with dithers) [16, 17] with the important differences that: (i)
we have not yet made any kind of sparsity or other structural
assumption on x and, (ii) the “dithers” τi, at least in this
formulation, are dependent on the ai, which results in difficulty
applying existing results from this theory to this setting.

However, many of the techniques from this literature will
nevertheless be helpful in analyzing this problem. To see
this, we consider a randomized observation model where the
pairs pi,qi are chosen independently with i.i.d. entries drawn
according to a normal distribution, i.e., pi,qi ∼ N (0, σ2I).
In this case, we have that the entries of our sensing vectors
are i.i.d. with aij ∼ N (0, 2σ2). Moreover, if we define bi =
pi + qi, then we also have that bi ∼ N (0, 2σ2I), and we can
write τi = 1

2a
T
i bi. Note that while τi is clearly dependent

on ai, we do have that ai and bi are independent. To further
simplify things, let’s re-normalize by dividing by ∥ai∥, i.e.,
setting ãi = ai/ ∥ai∥ and τ̃i = τi/ ∥ai∥ and

Ai(x) = sign
(
ãTi x− τ̃i

)
.

It is easy to see that ãi is distributed uniformly on the sphere
Sn−1 = {a ∈ Rn : ∥a∥ = 1}. Note also that we can write
τ̃i = 1

2 ã
T
i bi. Since ai and bi are independent, ãi and bi

are also independent. Moreover, for any unit-vector ãi, if
bi ∼ N (0, 2σ2I) then ãTi bi ∼ N (0, 2σ2). Thus, we must
have τ̃i ∼ N (0, σ2/2), independent of ãi, which is the key
insight that enables the analysis below.

3. MAIN RESULT

Under the model described above, we would like to under-
stand how much the sign patterns of two different signals can
differ from their Euclidean distance. Our main result is that
given enough comparisons there is an approximate embedding
of the preference space into {−1, 1}m via our measurement
model. We assume any signal of interest has norm at most R,
i.e., we say signals x,y ∈ Bn

R, the n-ball of radius R. As an
example application, x might be considered the “true” user’s
ideal point and y some other possible estimate. Theorem 3.1
states that if x and y are sufficiently nearby, the respective
sign-measurement patterns A(x) and A(y) closely match. We
denote by dH the Hamming distance, i.e., dH counts the num-
ber of {−1,+1} sign measurement errors;

dH(A(x),A(y)) :=
1

m

m∑
i=1

1

2
|Ai(x)−Ai(y)|. (3.1)

Note that the following result applies for all x and y, and
follows from Lemma 3.2, which in contrast applies only for
fixed x and y.

Theorem 3.1. Let η > 0 and ζ > 0. Suppose m total mea-
surements of the form (2.1) may be taken, i.e., each ai is
drawn uniformly on the unit sphere and τ ∈ Rm is a vector
with entries τi ∼ N (0, σ2/2) independent of the ai, where
σ2 = 2R/n. If

m ≥ 1

2ζ2

(
2n log

(
3
√
n

ζ

)
+ log

(
2

η

))
.

Then there are constants c1, c2, c3, such that with probability
at least 1− η, for all points x,y ∈ Bn

R,

c1 ∥x− y∥
R

− ζ

(
2c1√
n
+ c2 + 1

)
≤ dH(A(x),A(y))

≤ c3 ∥x− y∥
R

+ ζ

(
2c3√
n
+

√
2

π
+ 1

)
.

Proof. By Lemma 3.2, for any fixed pair w, z ∈ Bn
R we have

bounds on the Hamming distance with probability at least
1− 2 exp(−2ζ2m), for all u ∈ Bδ(w) and v ∈ Bδ(z). Since
the radius R ball can be covered with a set U of radius δ
balls with |U | ≤ (3R/δ)n , by a union bound we have with



probability at least 1−2(3R/δ)2n exp(−2ζ2m), for all w, z ∈
U , for all u ∈ Bδ(w) and v ∈ Bδ(z),

c1 ∥w − z∥
R

− c2δ
√
n

R
− ζ ≤ dH(A(u),A(v))

≤ c3 ∥w − z∥
R

+
δ

R

√
2n

π
+ ζ.

Since ∥x− y∥ − 2δ ≤ ∥w − z∥ ≤ ∥x− y∥+ 2δ,

c1 ∥x− y∥
R

− 2c1δ

R
− c2δ

√
n

R
− ζ

≤ dH(A(x),A(y))

≤ c3 ∥x− y∥
R

+
2c3δ

R
+

δ

R

√
2n

π
+ ζ.

Letting δ = ζR/
√
n this becomes

c1 ∥x− y∥
R

− ζ

(
2c1√
n
+ c2 + 1

)
≤ dH(A(x),A(y))

≤ c3 ∥x− y∥
R

+ ζ

(
2c3√
n
+

√
2

π
+ 1

)
.

Lower bounding the probability by 1− η,

2(3R/δ)2n exp(−2ζ2m) ≤ η.

Rearranging, we have the desired result.

We comment that Theorem 3.1 concerns a particular choice
of the variance parameter σ2. A natural question is what would
happen with a different choice of σ2. In fact, this assumption
is critical—intuitively, if σ2 is too small, then nearly all the
hyperplanes induced by the comparisons will pass very close
to the origin, so that accurate estimation of even ∥x∥ becomes
impossible. On the other hand, if σ2 is too large, then an
increasing number of these hyperplanes will not even intersect
the ball of radius R in which x is presumed to lie, thus yielding
no new information.

Lemma 3.2. Let w, z ∈ Bn
R be fixed. Let m measurements of

the form (2.1) be taken in which each ai is drawn uniformly
on the unit sphere and let τ ∈ Rm be a vector with entries
τi ∼ N (0, σ2/2) independent of the ai. Fix ζ > 0, δ > 0,
and define

Bδ(w) := {u ∈ Bn
R : ∥u−w∥ ≤ δ}.

Then there are constants c1, c2, and c3 such that with prob-
ability at least 1 − exp(−2ζ2m), for all u ∈ Bδ(w) and
v ∈ Bδ(z),

c1 ∥w − z∥
R

− c2δ
√
n

R
− ζ ≤ dH(A(u),A(v))

≤ c3 ∥w − z∥
R

+
δ

R

√
2n

π
+ ζ,

where dH is the Hamming distance (3.1).

Proof. Fix δ > 0 and let u ∈ Bδ(w),v ∈ Bδ(z). Recall that
the Hamming distance dH is a sum of independent identically
distributed Bernoulli random variables and we may bound it
using Hoeffding’s inequality. Since our probabilistic upper and
lower bounds must hold for all u,v as described above, we
introduce quantities L0 and L1 which represent two “extreme
cases” of the Bernoulli variables:

L0 := sup
u∈Bδ(w),v∈Bδ(z)

1

2m

m∑
i=1

|Ai(u)−Ai(v)|

L1 := inf
u∈Bδ(w),v∈Bδ(z)

1

2m

m∑
i=1

|Ai(u)−Ai(v)|.

Then we have

L1 ≤ dH(A(u),A(v)) ≤ L0

Denote P0 = 1− EL0 and P1 = EL1, i.e.,

P0 = P{∀u ∈ Bδ(w),∀v ∈ Bδ(z) : Ai(u) = Ai(v)}
P1 = P{∀u ∈ Bδ(w),∀v ∈ Bδ(z) : Ai(u) ̸= Ai(v)}.

We give a lower bound for P0 in Lemma 3.3 and for P1 in
Lemma 3.4. Now by Hoeffding’s inequality,

P{L0 > (1− P0) + ζ} ≤ exp(−2mζ2)

P{L1 < P1 − ζ} ≤ exp(−2mζ2).

Hence, with probability at least 1− 2 exp(−2mζ2),

P1 − ζ ≤ dH(A(u), A(v)) ≤ (1− P0) + ζ.

Since

P1 ≥ ∥w − z∥ − 2δ
√
n

16e
√
12πR

,

and recalling σ2 = 2R2/n,

1− P0 ≤ 2

σπ

Γ(n2 )

Γ(n+1
2 )

∥w − z∥+ 2δ

σ
√
π

≤
√
2n

Rπ

√
2π

n
∥w − z∥+ 2δ

√
n

R
√
2π

=
2 ∥w − z∥

R
√
π

+
δ

R

√
2n

π
,

the lemma is satisfied with appropriate c1, c2, c3.

3.1. Probability estimates

Lemma 3.3. Let w, z ∈ Bn
R be distinct. Fix δ > 0. Denote

by P0 the probability that all points u and v that are within
δ of w and z respectively do not differ in the random mea-
surement denoted by Ai (i.e., the two δ-balls are separated by
hyperplane i). The direction and threshold of hyperplane i are
denoted by a and τ respectively. That is,

P0 = P{∀u ∈ Bδ(w),∀v ∈ Bδ(z) : Ai(u) = Ai(v)}.



Then

1− P0 ≤ 2

σπ

Γ(n2 )

Γ(n+1
2 )

∥w − z∥+ 2δ

σ
√
π
.

Proof. This result will require the following integral;∫
Sn−1

|aT (w − z)| ν(da) = 2√
π

Γ(n2 )

Γ(n+1
2 )

∥w − z∥ ,

where ν is the uniform probability measure on the unit sphere.
We need a lower bound on P0 which is equivalent to an upper
bound on

1− P0 = P{Ai(u) ̸= Ai(v)

for some u ∈ Bδ(w),v ∈ Bδ(z)}.

Assume aTw > aT z. Then this probability is just

P{aTv < τ < aTu for some u ∈ Bδ(w), v ∈ Bδ(z)}
= P{ min

v∈Bδ(z)
aTv < τ < max

u∈Bδ(w)
aTu}

But

min
v∈Bδ(z)

aTv ≥ aT z− δ, max
u∈Bδ(w)

aTu ≤ aTw + δ,

so we have

1− P0 ≤ P{aT z− δ < τ < aTw + δ}.

=

∫
Sn−1

∣∣∣∣Φ(aTw + δ

σ/
√
2

)
− Φ

(
aT z− δ

σ/
√
2

)∣∣∣∣ ν(da)
≤
∫
Sn−1

1

σ
√
π

∣∣|aT (w − z)|+ 2δ
∣∣ ν(da)

≤ 1

σ
√
π

∫
Sn−1

|aT (w − z)| ν(da) + 2δ

σ
√
π

≤ 2

σπ

Γ(n2 )

Γ(n+1
2 )

∥w − z∥+ 2δ

σ
√
π
.

Lemma 3.4 (Probability of separation with a single random
measurement). Let w, z ∈ Bn

R be distinct. Fix δ > 0. Denote
by P1 the probability that all points u and v that are within δ of
w and z respectively differ by a random measurement denoted
by Ai (i.e., the two δ-balls are separated by hyperplane i). The
direction and threshold of hyperplane i are denoted by a and
τ respectively. That is,

P1 = P{∀u ∈ Bδ(w),∀v ∈ Bδ(z) : Ai(u) ̸= Ai(v)}.

Set ϵ0 ≤ ∥w − z∥. Then,

P1 ≥ ϵ0 − 2δ
√
n

16e
√
12πR

.

Proof. Let ϵ = ∥w − z∥. Assume without loss of generality
that ∥w∥ ≥ ∥z∥, otherwise swap w and z in the argument
that follows. If Bδ(w) ∩ Bδ(z) ̸= ∅, then the chance that

a hyperplane with orientation a and offset τ splits the two
balls is zero. Hence, we may consider a restriction to the
portion of the sphere where |aT (w − z)| ≥ 2δ. Further,
since the distribution of τ is symmetric, we can restrict to
Cα = {a : aT (w − z) ≥ α} for some α ≥ 2δ and double the
integral. Hence Cα is a hyper-spherical cap of height 1− α/ϵ.

P1 = P{aT z+ δ ≤ τ ≤ aTw − δ

∨ aTw + δ ≤ τ ≤ aT z− δ}

≥ 2

∫
Cα

∣∣∣∣Φ(aTw − δ

σ/
√
2

)
− Φ

(
aT z+ δ

σ/
√
2

)∣∣∣∣ω(da)
To obtain a lower bound, we consider the area of an ar-

bitrary subset C ′
α ⊂ Cα and multiply this by the minimum

value of the integrand over that set. Let ξ > 0 and W = {a :
aTw ≤ ξ ∥w∥}. For any a ∈ Cα, since aT (w − z) ≥ 2δ, we
have aT z+δ ≤ aTw−δ ≤ ξR. Let C ′

α = Cα∩W . One can
show, by properties of the normal distribution, for all a ∈ C ′

α,∣∣∣∣∣Φ
(√

2(aTw − δ)

σ

)
− Φ

(√
2(aT z+ δ)

σ

)∣∣∣∣∣
≥ (aT (w − z)− 2δ)

√
2

σ
φ

(√
2

σ
ξR

)
.

Since C ′
α = Cα ∩W = Cα \W c is the difference of hyper-

spherical caps Cα and W c, to obtain a lower bond on ν(C ′
α),

it suffices to consider the case where W c ⊂ Cα. Since the
area of C ′

α does not change by varying the orientation of w,
we may assume w and z are colinear, or z = (1 − ϵ0)w.
We set ξ = ξ′/

√
n, and α = α′/

√
n. Recall by assumption

σ = R
√
2/n. Then the lower bound above becomes(
α′
√
n
− 2δ

) √
n

R
φ(
√
nξ) =

(
α′ − 2δ

√
n
) φ(ξ′)

R

=
(
α′ − 2δ

√
n
) exp(−(ξ′)2/2)√

2πR
.

By integrating, it can be shown that the normalized area of C ′
α

is bounded by

ν(C ′
α) ≥

1

4
√
3
(ξ′ − α′/ϵ) exp(−(ξ′)2/2).

Combining the two previous formulae, and setting α′ =
(2δ

√
n+ ξ′ϵ)/2, we have,

P1 ≥
(
α′ − 2δ

√
n
) (ξ′ − α′/ϵ)

4
√
6πR

exp(−(ξ′)2)

≥ (2δ
√
n− ϵξ′)2

4ϵ

exp(−ξ′2)

4
√
6πR

≥ (ξ′2ϵ− 2ξ′δ
√
n)

exp(−ξ′2)

16e
√
6πR

We obtain the stated result by setting ξ′ = 1 and ϵ ≥ ϵ0.
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